Faculty members affiliated with the Laboratory for Aviation and the Environment are committed to educating the next generation of research and industry leaders who will advance the sustainability of aviation. Courses relevant to aviation’s environmental impacts offered by lab-affiliated faculty include:
- MIT graduate subject 16.715 Aerospace, Energy, and the Environment
Addresses energy and environmental challenges facing aerospace in the 21st century. Topics include: aircraft performance and energy requirements, propulsion technologies, jet fuels and alternative fuels, lifecycle assessment of fuels, combustion, emissions, climate change due to aviation, aircraft contrails, air pollution impacts of aviation, impacts of supersonic aircraft, and aviation noise. Includes an in-depth introduction to the relevant atmospheric and combustion physics and chemistry with no prior knowledge assumed. Discussion and analysis of near-term technological, fuel-based, regulatory and operational mitigation options for aviation, and longer-term technical possibilities.
Instructor: Dr. Prashanth Prakash, Dr. Jayant Sabnis, Dr. Raymond Speth - MIT graduate subject 16.886J Air Transportation Systems Architecting
Addresses the architecting of air transportation systems. Focuses on the conceptual phase of product definition including technical, economic, market, environmental, regulatory, legal, manufacturing, and societal factors. Centers on a realistic system case study and includes a number of lectures from industry and government. Past examples include the Very Large Transport Aircraft, a Supersonic Business Jet and a Next Generation Cargo System. Identifies the critical system level issues and analyzes them in depth via student team projects and individual assignments. Overall goal is to produce a business plan and a system specifications document that can be used to assess candidate systems.
Instructor: Prof. R. J. Hansman - MIT undergraduate professional area subject 16.50 Aerospace Propulsion
Presents aerospace propulsive devices as systems, with functional requirements and engineering and environmental limitations. Requirements and limitations that constrain design choices. Both air-breathing and rocket engines covered, at a level which enables rational integration of the propulsive system into an overall vehicle design. Mission analysis, fundamental performance relations, and exemplary design solutions presented.
Instructor: Prof. Carmen Guerra Garcia, Dr. Prashanth Prakash, Dr. Jayant Sabnis - MIT graduate subject 16.71 The Airline Industry
Overview of the global airline industry, focusing on recent industry performance, current issues and challenges for the future. Fundamentals of airline industry structure, airline economics, operations planning, safety, labor relations, airports and air traffic control, marketing, and competitive strategies, with an emphasis on the interrelationships among major industry stakeholders. Recent research findings of the MIT Global Airline Industry Program are showcased, including the impacts of congestion and delays, evolution of information technologies, changing human resource management practices, and competitive effects of new entrant airlines. Taught by faculty participants of the Global Airline Industry Program.
Instructor: Dr. Florian Allroggen
Further information is available at the MIT course catalogue.